Toward Controllable Hierarchical Clock Tree Synthesis with Skew-Latency-Load Tree

1.SKEW-LATENCY-LOAD TREE CONSTRUCTION

首先提出了时钟延迟(latency),时钟漂移(skew),负载电容与线长的关系。

\(PL(s_i)\)denotes the path length from the source to \(s_i\)of \(T\) .

\(\begin{gathered} \text { skew } \propto \max _{s_i \in \mathcal{S}}\left\{P L\left(s_i\right)\right\}-\min _{s_i \in \mathcal{S}}\left\{P L\left(s_i\right)\right\}, \\ \text { latency } \max _{\max } \propto \max _{s_i \in \mathcal{S}}\left\{P L\left(s_i\right)\right\}, \\ \text { load } \propto W L(T), \end{gathered}\)

1.1 SLLT

\(\alpha\) 代表浅度,可以反应时钟树系统的延迟(latency)。

\(\alpha=\max _{s_i \in \mathcal{S}}\left\{\frac{P L\left(s_i\right)}{M D\left(s_i\right)}\right\},\) PL为时钟到\(s_i\)的线长,MD为时钟到\(s_i\)的曼哈顿距离。

\(\beta\) 代表亮度,可以反应时钟树的负载电容。

\(\beta=\frac{W L(T)}{W L(\operatorname{MST}(G))}\) ,WL为树的总线长,MST为最小生成树。

\(\gamma\) 代表偏斜度,可以反应时钟漂移。

\(\gamma=\frac{\max _{s_i \in \mathcal{S}}\left\{P L\left(s_i\right)\right\}}{\overline{P L}} .\)